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A stochastic model for high-Rayleigh-number
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A stochastic one-dimensional model for thermal convection is formulated and applied
to high-Rayleigh-number convection. Comparisons with experimental data for heat
transfer in Rayleigh–Bénard cells are used to estimate two model parameters.
Reasonable agreement with experimental results is obtained over a wide range of
physical parameter values (six orders of magnitude in Rayleigh number, five orders
of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the
core of the convection cell are studied. Good agreement with available experimental
data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which
matches experimental observations, and another at high Prandtl number for which
no experimental data exists. The model results are interpreted in terms of two distinct
mechanisms for the production of core fluctuations.

1. Introduction
Turbulent thermal convection has long been recognized as an important aspect

of many natural fluid systems, with examples coming from both astrophysics (stars)
and geophysics (Earth’s atmosphere and molten interior). The physics of thermal
convection has typically been studied experimentally using Rayleigh–Bénard systems,
in which a cylinder of fluid is heated from below. The resulting temperature contrast
in the fluid generates turbulent motions which transport heat from the lower plate
to the upper plate of the cell. The long history of both experimental and theoretical
investigations of this system is summarized in Siggia (1994).

The driving force in convective turbulence is the temperature difference �T between
the top and bottom plates, which induces a density contrast �ρ = β�T for thermal
expansion coefficient β . In the Boussinesq approximation assumed here, temperature
and density variations are proportional and the density difference across the cell is
much smaller than the average fluid density ρ0. The strength of the driving force is
expressed in dimensionless form by the Rayleigh number Ra, defined as

Ra ≡ g�ρΛ3

ρ0νκ
=

gβ�T Λ3

ρ0νκ
, (1.1)

where g is the acceleration due to gravity, Λ is the distance separating the walls, ν

is the kinematic viscosity, and κ is the molecular diffusivity. Two other parameters
also govern the behaviour of the system. One is the Prandtl number, Pr ≡ ν/κ ,
which measures the relative strengths of the molecular processes. It is determined
by the choice of working fluid. The other is the aspect ratio of the cell; the ratio
of cell diameter (assuming a cylindrical cell) to cell height. Natural systems might
be considered to correspond to infinite aspect ratio cells, although in many natural
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systems the upper or lower boundaries may also differ from fixed-temperature plates.
The most often measured quantity in convective cells is the heat transfer rate, which
is expressed in dimensionless terms by the Nusselt number Nu, defined as the ratio of
the turbulent heat transfer at the plates to the hypothetical heat transfer in quiescent
fluid owing to molecular conduction. The classical assumption that the heat transfer
should be independent of the height Λ for large Ra yields the scaling

Nu ∼ Ra1/3, (1.2)

based on dimensional analysis (Siggia 1994). Experimental results in Rayleigh–Bénard
cells generally indicate scaling laws with exponents less than 1/3, with the actual
value depending on Pr . A scaling analysis proposed by Grossmann & Lohse (2000,
2001, 2002) attempts to explain these non-classical scaling laws by considering the
dissipation of energy and thermal fluctuations in the cell.

Although much attention has been paid to understanding the non-classical
behaviour of the heat transfer, the turbulent fluctuations of the temperature in
the core of the Rayleigh–Bénard cell are also of interest and are the primary focus of
this study. The typical magnitude of the temperature fluctuations has been observed to
scale with Ra (Castaing et al. 1989; Niemela et al. 2000). The magnitude also shows a
dependence on cell geometry, although the probability density function (p.d.f.) of the
fluctuations does not (Daya & Ecke 2001). Understanding how the shape of
the p.d.f. depends on physical flow parameters and boundaries is important for
generalizing experimental observations to natural convecting systems in geophysics
and astrophysics. Knowing the likelihood of large temperature fluctuations is
especially important in reacting flows, since reaction rates have a strongly nonlinear
temperature dependence.

In this work, a stochastic one-dimensional model is used to study high-Rayleigh-
number convection. The model is a version of the ‘One-Dimensional Turbulence’
(ODT) model created by Kerstein (1999) and has been previously applied to stably
stratified turbulence (Wunsch & Kerstein 2001; Wunsch 2003). Comparisons with
heat transfer measurements in Rayleigh–Bénard cells are performed to set parameters
and validate the performance of the model. Since the one-dimensional model cannot
reproduce the important effects of cell geometry and sidewall heat loss, perfect
agreement with experiment is not expected. Instead, the goal is to reproduce the
approximate Nu at a given Ra and Pr so that the correct flow conditions are
obtained to permit study of the interior fluctuations. Unlike simple scaling theories,
the stochastic time-dependent nature of this model allows a detailed study of the
statistics of fluctuations in the core of the cell. These data are compared with
experimentally measured statistics (where available) and provide insight into the
convection processes that govern the likelihood of fluctuations.

The advantages and disadvantages of this modelling approach relative to other
forms of numerical simulation are worth mentioning. First and foremost, the
restriction to one dimension makes the model much more computationally affordable
than direct numerical simulation. This makes it possible to explore the parameter
space of Ra and Pr much more efficiently. Published studies of the Prandtl-number
dependence of the heat transfer rate using direct numerical simulation have been
performed only at the modest Rayleigh numbers of Ra = 106 (Verzicco & Camussi
1999) and Ra =107 (Kerr & Herring 2000), while exploration of the dependence on
Ra at near-unity Prandtl number has reached Ra = 2 × 109 (Verzicco 2002). This last
study required a total of 1.6 × 106 mesh nodes, while our model simulations of the
same case require only 1.6 × 104 mesh nodes. The ODT simulations are also carried
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out for much longer times to collect accurate statistical information on temperature
fluctuations (103 to 105 large-eddy turnover times, compared to 20 to 100 turnover
times for typical direct numerical simulations). Of course, the advantage of full three-
dimensional numerical simulation is that all relevant effects, including geometry and
sidewall heat transfer, are captured, which is not the case in the model. However,
these effects are negligible in many natural systems, and the ODT model therefore
might be well-suited to future studies of those flows.

A more efficient approach to simulating the effects of geometry on a convecting
flow is the use of large-eddy simulation (Kimmel & Domaradzki 2000) or LES,
which neglects the smaller scales. However, this technique does not allow the study of
small-scale fluctuations. The model used in this work is therefore complementary to
large-eddy simulation, in the sense that LES incorporates geometry, but parameterizes
the effects of small-scale fluctuations, whereas the opposite is true of ODT.

2. One-dimensional model
2.1. Overview

The temperature structure of a convecting system is a function primarily of the
vertical coordinate y. Hence, it is plausible that a one-dimensional model might
describe the physics of the problem. The approach used here is a version of the ODT
model created by Kerstein (1999); the specific version is identical to that applied to
stably stratified turbulence in Wunsch & Kerstein (2001) and Wunsch (2003), except
for the boundary conditions and forcings. Only a brief summary of the model will be
presented here; see the earlier literature for additional details.

Two scalar fields, each a function of vertical position y and time t , are used
to describe convecting systems in this model. One is a density scalar, defined as
δρ(y, t) ≡ ρ(y, t) − ρ0, which represents a vertical profile of density fluctuations in the
convective cell. The reference density ρ0 is taken to be the fluid density at the lower
plate, so that δρ � 0. In the Boussinesq approximation, we could equivalently use a
temperature variable δT , such that δT /�T = δρ/�ρ. However, for consistency with
previous ODT publications in which temperature was not the only source of density
fluctuations, we formulate the model in terms of δρ in this work. The other scalar field
in the model is ‘velocity’, v(y, t), whose square represents a vertical profile of kinetic
energy in the cell. It is not a real velocity in the sense that it does not directly advect
itself or the density scalar. Rather, it is used simply as a kinetic-energy surrogate in
the model. Consequently, it is most plausibly interpreted in the current context as
representing the magnitude of velocity fluctuations within the cell.

In ODT, advection consists of randomly chosen measure-preserving mapping events
that rearrange the scalar fields. Each mapping is a local event, with a well-defined
position y0 and spatial extent l, and each event is loosely interpreted as corresponding
to a turbulent ‘eddy’ of size l in the flow. Mappings are possible on all scales
and represent all scales of convective motions. The mappings are responsible for
all advective transport within the model. (Recall that the velocity scalar does not
directly advect fluid.) Mappings on the largest scale (order Λ) therefore simulate the
transport resulting from large-scale motions, while smaller mappings simulate the
transport resulting from smaller-scale turbulent eddies within the cell. The mapping
function is designed to ‘wrinkle’ the flow, reducing length scales within the affected
interval. In addition, the mappings induce net scalar transport in the presence of a
gradient. The times and locations of the mapping events are selected at random from
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a rate distribution whose functional dependence on the local ODT variables δρ(y, t)
and v(y, t) is based on the energetics of turbulence.

Using simple energetic scaling arguments, a characteristic frequency can be inferred
for each possible eddy in the system, thereby determining an event rate distribution
corresponding to the current state of the system. The model then randomly samples
all possible eddies with the assigned frequencies. During the time intervals between
these instantaneous mappings, the scalar fields evolve according to the molecular
transport equations: (

∂t − ν∂2
y

)
v(y, t) = 0, (2.1)(

∂t − κ∂2
y

)
δρ(y, t) = 0. (2.2)

Boundary conditions are applied at the top (y =Λ) and bottom (y = 0) of the cell, so
that v(y = 0) = v(y = Λ) = 0, δρ(y = 0) = 0 and δρ(y = Λ) = �ρ. These equations are
solved as a time sequence of initial-value problems, each starting immediately after a
mapping event and proceeding until the time of the next mapping event.

It is worth clarifying the interpretation of the velocity scalar and the mappings with
regard to the large-scale convection rolls (or ‘wind’) which are observed in turbulent
Rayleigh–Bénard cells. Since the ODT velocity scalar serves only as a kinetic energy
reservoir, it is interpreted in this work as representing velocity fluctuations within
the cell, but not large-scale coherent motions. While the latter have no explicit
representation within the model, it is plausible that the vertical transport which
results from these motions in a real cell are represented with some accuracy in the
model by the large-scale mappings. The non-classical heat transfer results presented
in § 4.1 are an indication that the effective transport of the large-scale motions in a
Rayleigh–Bénard cell is represented with some fidelity in the model.

The ODT model contains four basic elements necessary for exploring turbulent
convecting flows: energy conservation, scalar transport, multiscale dynamics and
molecular dissipation. The restriction to one computational dimension makes it
possible to efficiently study a wider range of parameter space than is possible by
direct numerical simulation.

2.2. Eddy definition

The fundamental dynamical object in the model is the advective mapping. It consists
of a measure-preserving map f (y) of the domain onto itself, so that any scalar field
undergoes the transformation v(y) → v(f (y)) when acted on by the map. The mapping
acts on a segment of length l, from position y0 to y0 + l. It is loosely interpreted
as representing the effects of an ‘eddy’ of size l on the scalar fields. The velocity
and density scalars are both mapped to mimic the transport of fluid elements. The
particular mapping function is arbitrary, but we choose a piecewise-linear function
as a convenient way of meeting the requirements of measure preservation and finite
extent. As in previous ODT work, we use a three-piece function which takes the line
segment, shrinks it to a third of its original length, and then places three copies on
the original domain. The middle copy is reversed, so that the mapped field v(f (y)) is
continuous if v(y) is continuous. The mapping function reduces to the identity map
f (y) = y outside of the mapped interval. Details of the function f (y) can be found
in Kerstein (1999).

The rearrangement of the density field by the mapping alters the total potential
energy, but the mapping itself leaves the total kinetic energy unchanged. To enforce
energy conservation, a function K(y) of specified form is added to the velocity field
whenever an eddy occurs. The mapping induces displacements y − f (y). This is a
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natural candidate for the energy exchange function, so we assume K(y) = y − f (y).
This function is non-zero only within the mapped region.

Thus, under the action of an eddy, the density and velocity fields undergo the
transformations

δρ(y) → δρ(f (y)),
v(y) → v(f (y)) + cK(y).

}
(2.3)

The amplitude c of the energy exchange term cK(y) is determined for each eddy
individually to achieve energy conservation. The eddy therefore converts all potential
energy released by the mapping to kinetic energy within the mapping interval.

To calculate c, the energetic consequences of applying (2.3) must be assessed. The
energy E is defined as

E ≡ 1
2
ρ0

∫
v2(y)dy + g

∫
δρ(y)ydy. (2.4)

To achieve energy conservation, the amplitude c in (2.3) must be determined so that
the energy is unchanged by the action of the eddy. This yields

c =
27

4l

(
−vK ±

√
v2

K − 8

27

ρK

ρ0

gl

)
, (2.5)

where

sK ≡ 4

9l2

∫ y0+l

y0

s(y)[l − 2(y − y0)]dy, (2.6)

and s denotes either v or ρ. The numerical factors in (2.5) and (2.6) are determined by
the precise mathematical form of the mapping function, and are required to achieve
energy conservation for each eddy mapping. The solution (2.5) is not necessarily real;
mappings that do not yield a real value for c are assumed to be energetically prohibited
(more details later). The solution branch is chosen so that c =0 if ρK = 0. This implies
using the ‘+’ sign in (2.5) whenever vK > 0, and the ‘−’ sign otherwise. There is an
ambiguity if vK = 0 that is resolved using a random perturbation procedure. Using
the value of c given by (2.5) for each mapping event, cK(y) is added to v after the
mapping to conserve energy.

2.3. Eddy selection

The final ingredient required in the model is to determine the time sequence of
eddies, each parameterized by position y0 and size l. To estimate a time scale for
each possible eddy, consider the Sharp–Wheeler turnover time τ (y0, l; t) for eddies
driven by an unstable density difference ρ̂: τ ∼

√
lρ0/(gρ̂). In real turbulence, this

is roughly the time required for a region of size l to convectively mix. In ODT,
eddies are implemented instantaneously, but eddies in a given order-one range of
size and location should occur approximately once each turnover time. In ODT, τ is
determined by analogy with the Sharp–Wheeler time, but expressed in terms of energy
by assuming that (l/τ )2 is proportional to the potential energy change (−8glρK/27ρ0)
due to the mapping: (

l

τ

)2

∼ − 8

27

ρK

ρ0

gl. (2.7)

This time scale is equivalent (up to numerical factors) to the time required for a fluid
element with density contrast ρK to fall (drag-free) a distance l through surrounding
fluid with density ρ0.
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While density fluctuations are the primary drivers of eddy turnovers in the flows
considered here, kinetic energy also contributes. The typical turnover time for eddies
in the absence of density differences scales as τ (l) ∼ l/ṽ(l), where ṽ(l) is some measure
of the velocity fluctuations. A convenient velocity measure for determining the
turnover time for individual eddies is vK , defined by (2.6). Both density and velocity
contributions must be included in determining the eddy turnover times. While the
precise functional form is arbitrary, we choose a linear combination of the form(

l

τ

)2

∼ v2
K − 8

27

ρK

ρ0

gl − Z
ν2

l2
(2.8)

for consistency with the ODT energy conservation mechanism (2.5). Eddies whose τ

values are imaginary are, of course, prohibited by energetic considerations. The third
term on the right-hand side of (2.8) is included to prohibit eddies smaller than the
viscous damping scale from occurring. It is negligible at larger scales. The constant
of proportionality Z in the viscous damping term is a parameter of the model.

The time scales τ for all possible eddies are translated into an eddy-rate distribution
λ, defined as λ(y0, l; t) ≡ C/l2τ (y0, l; t). All of the interesting physics is subsumed in
τ (2.8), while the dimensionless constant C is a parameter of the model. Using the
turnover time in (2.8), the eddy-rate distribution is given by

λ =
Cν

l4

√(
vKl

ν

)2

− 8g

27ν2

ρK

ρ0

l3 − Z. (2.9)

The actual rate of an eddy with position between y0 and y0 + dy0 and length in the
range between l and l+dl is given by λ(y0, l) dy0 dl. We can see that, in the absence of
gravity, a ‘local Reynolds number’, vKl/ν, determines the rate of each eddy. Buoyant
forces either enhance or lower the effective local Reynolds number. The construction
of the ODT eddy rate given above uses two free parameters, C and Z. The overall
rate parameter C determines the strength of the turbulence in the model, while Z

determines the smallest eddy size (analogous to the Kolmogorov scale in the model).
The model is basically an application of mixing length theory locally throughout the

model domain, defining a wide range of possible mixing lengths l and corresponding
time scales τ that depend on the current local flow structure as well as on l. Turbulent
mixing is randomly applied throughout the system on all length scales based on the
locally appropriate time scales.

Given initially motionless fluid and an initially constant density gradient �ρ/Λ

in the cell, the measure of the density fluctuations that drive an eddy of size l is
ρK = −2�ρl/27Λ. Hence, an eddy of size l yields a real value of λ based on (2.9) only
if Ra � (27/4)2ZPr(Λ/l)4. Since the ODT model is based on turbulence scalings,
it makes sense only when applied to problems in which the Rayleigh number is
large enough to permit a range of eddy sizes to occur. A rough estimate of this
condition is obtained by requiring λ to be real for eddies of size l ∼ 0.1Λ in the initial
configuration. This yields

Ra � 105ZPr (2.10)

as the approximate condition for well-developed turbulence in the model. This sets
a threshold value of Ra for turbulent convection at any given Pr in the model.
Although ODT will yield results at lower values of Ra, their validity would be suspect
since the cascade assumption of ODT will be violated whenever (2.10) does not hold.
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2.4. Conservation laws

Because the eddies do not alter the energy in the system, boundaries and viscous
dissipation are the only sources of energy change. Using the differential equations
for the dissipative processes, it is straightforward to form an equation for the energy
change:

∂tE = gκ

∫
y∂2

y δρdy + νρ0

∫
v∂2

y vdy = gκ�ρ

(
Λ

�ρ
∂yδρ|y=Λ − 1

)
− νρ0

∫
(∂yv)2dy.

(2.11)

The rate of energy change jumps instantaneously when an eddy occurs, but the total
energy itself is not changed by the eddy. In a statistical steady state, the energy change
is, on average, zero (〈∂tE〉 = 0), and this implies the relation

Ra(Nu − 1) = Pr2ε, (2.12)

where the Nusselt number Nu is defined as

Nu ≡ Λ

�ρ
〈∂yδρ(y)〉|y=Λ (2.13)

and the dimensionless energy dissipation ε is

ε ≡ Λ3

ν2

∫
〈(∂yv)2〉dy. (2.14)

There is an additional conservation law for the density variance, δρ2. Since
eddies preserve all moments of the density field, only the boundaries and molecular
dissipation alter the variance. Again, it is straightforward to form the conservation
law

∂t

∫
δρ2dy = 2κ

∫
δρ

(
∂2

y δρ
)
dy = 2κ(δρ∂yδρ)|Λ0 − 2κ

∫
(∂yδρ)2dy. (2.15)

In statistical steady state this implies

ερ ≡ Λ

�ρ2

∫
〈(∂yδρ)2〉dy = Nu. (2.16)

The conservation relations (2.12) and (2.16) are the one-dimensional analogues of the
general conservation laws for three-dimensional convection (Siggia 1994).

3. Numerical implementation
To render the ODT model in non-dimensionalized form for numerical simulation,

it is necessary to rescale the length, time, velocity and density variables by reference
values. The obvious length scale for rescaling is the cell height Λ. The dimensionless
position y ′ and eddy size l′ are defined by y ′ ≡ y/Λ and l′ ≡ l/Λ. Time is rescaled in
terms of the time scale for viscous smoothing of cell-scale structures: t ′ ≡ tν/Λ2.

The velocity is rescaled in terms of y ′/t ′: v′ ≡ CvΛ/ν. Owing to the inclusion of C

in the dimensionless velocity, physical velocities are rescaled from model velocities by
the model constant C. The time evolution equation for the velocity field becomes

∂v′

∂t ′ =
∂2v′

∂y ′2 . (3.1)
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The density field δρ is non-dimensionalized by the density difference �ρ across the
cell: δρ ′ ≡ δρ/�ρ. The time evolution equation for the density field is

∂δρ ′

∂t ′ =
1

Pr

∂2δρ ′

∂y ′2 , (3.2)

where Pr ≡ ν/κ is the Prandtl number.
The rescaled eddy rate is

λ′ =
1

l′4

√
(l′v′

K )2 − g′ρ ′
Kl′3 − ZC2, (3.3)

where the dimensionless gravity is g′ ≡ (8C2�ρΛ3/27ρ0ν
2)g. The dimensionless

measure of velocity and density fluctuations is

s ′
K ≡ 4

9l′2

∫ y ′
0+l′

y ′
0

dy ′s ′(y ′)(l′ − 2(y ′ − y ′
0)), (3.4)

where s denotes v or ρ, and the dimensionless energy-exchange amplitude (2.5) is

c′ =
27

4l′

(
− v′

K ±
√

v′2
K − g′ρ ′

Kl′
)
. (3.5)

The ODT model now contains a single meaningful model parameter ZC2, as well
as the physical control parameters g′ and Pr. As a result of this particular non-
dimensionalization, only the combination of model parameters ZC2 need be varied
in exploring the parameter space. For any given ZC2, a number of simulations with
different g′ and Pr can be performed, and the heat transfer rates (Nu) calculated
for each case. Selection of plausible individual values of C and Z requires empirical
input. Experimental data for Nu(Ra, Pr) is required to estimate the value of Ra that
corresponds to the Nu calculated for one simulation. Once this is known, a plausible
value for C can be calculated from the definition of g′, re-expressed as

C2 =
27

8Ra
Prg′. (3.6)

Once C has been estimated, the value of Ra for each simulation with the same ZC2

can be calculated from the values of g′ and Pr corresponding to that simulation. This
procedure is employed in the next section to estimate C.

In the absence of empirical input, each ODT simulation with particular values of
ZC2, g′ and Pr corresponds to a family of model solutions with different values of
C and Ra, so long as RaC2 remains fixed according to (3.6). The quantity RaC2 can
therefore be thought of as an ‘ODT Rayleigh number’, and the scaling of computed
quantities (such as Nu) with RaC2 can be studied in the model without empirical
input, although the prefactor in the scaling relation cannot be compared to experiment
unless an empirical estimate of C is made.

The ODT model consists of the continuous implementation of molecular processes
based on (3.1) and (3.2) for the velocity and density fields, punctuated by discrete
advection events (eddies). Eddies are randomly selected with rates given by (3.3) and
(3.4). Details of the sampling process can be found in Kerstein (1999). All eddy sizes
(from the grid resolution to the entire cell height) and locations are sampled, but (3.3)
determines which are implemented in a grid-independent manner. When an eddy is
implemented, both fields are advected by the mapping function, and then c′K(y ′) is
added to the velocity field (to conserve energy), where the amplitude c′ is given by
(3.5).
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Figure 1. Typical ODT instantaneous (solid line) and time-averaged (dashed line) temperature
profiles, taken from a simulation with RaC2 = 1012, Pr = 0.7, and ZC2 = 105. A plausible value
of C for this case is C2 = 1500, based on comparisons to experimental data (see figure 4),
which corresponds to Ra= 7 × 108. Inset: A closeup of the temperature profile near the cell
centre.

In numerical implementation, a first-order implicit finite-difference scheme was
applied for solution of the molecular process equations. The continual rearrangement
of the fields by eddies eliminates any need for sophisticated numerical techniques,
since more accurate information is naturally destroyed by the random motions. Grid
resolution was sufficient so that the smallest eddy size was 24 to 1000 times the grid
point separation, depending on the Prandtl number. Up to 65 536 grid points were
used. Simulations were run until a statistically steady state was achieved before any
data collection was undertaken.

4. Simulation results
Figure 1 shows the temperature profile δT (y) resulting from a typical simulation.

The profile indicates two thermal boundary regions near y ∼ 0 and y ∼ Λ, separated
by a core mixed region. (For the purpose of presenting results, we use temperature
instead of density as our variable, since that is standard in the experimental
convection literature which we use for comparison. The two are related according to
δT /�T = δρ/�ρ.) The instantaneous profile shows a number of significant
fluctuations; in the time-averaged profile these are smoothed away. The Nusselt
number is calculated using the slopes of the averaged profile at the upper and lower
plates. Statistics of the temperature and velocity fluctuations are sampled in the
well-mixed core region.

The ODT model has no explicit mechanism for representing sidewalls, and
conceptually seems most comparable to the infinite-aspect-ratio limit. Vertical motions
of all sizes in ODT have the same dynamical form (the eddy mapping). However,
in low-aspect-ratio (tall and thin) cells, large vertical motions are influenced by the
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Figure 2. Nu as a function of Pr from ODT simulations with Ra= 109. Three values of the
model constant ZC2 are shown: �, ZC2 = 823; �, 104; �, 105. For comparison, experimental
data (circles) are shown for mercury (Pr =0.025), helium (Pr= 0.7), water (Pr= 4), and
electrochemical convection (Pr= 2750). Also shown are experimental data using different
fluids to cover a range of Pr in the same apparatus, from Ahlers & Xu (2001) (solid line) and
Xia et al. (2002) (dashed line).

presence of the sidewalls, while smaller motions in the interior of the cell are not. On
the other hand, in large-aspect-ratio cells and in many geophysical and astrophysical
convection problems, vertical motions as large as the cell height can occur in the
cell interior with minimal influence from the sidewalls. In this case, all dynamical
length scales are free from sidewall distortion, which is analogous to ODT. Hence,
the model has no way to represent the geometry dependence that has recently been
reported for low-aspect-ratio convection cells (Daya & Ecke 2001). In addition,
the model lacks any representation of the consequences of imperfectly insulating
sidewalls, whose effects may play a significant role in Rayleigh–Bénard cells (Roche
et al. 2001; Verzicco 2002). Variations in the way in which this effect is accounted
for by different groups unfortunately complicates the interpretation of experimental
heat transfer measurements (Ahlers & Xu 2001). However, in the absence of data
from true infinite-aspect-ratio flows, heat transfer measurements from finite cells are
used to estimate plausible values of the model parameters C and ZC2. The goal is
not to explain the observed values of Nu, but rather to ensure that reasonable heat
transfer rates are produced by the simulations to facilitate proper study of the core
fluctuations.

4.1. Heat transfer, Nu(Ra, Pr)

To illustrate the role of the model parameters ZC2 and C, simulations with a range
of Prandtl numbers were performed at a Rayleigh number of Ra = 109 for three
different values of ZC2: 823, 104 and 105. The results are shown in figure 2, along
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ZC2 823 104 105

C2 800 1200 1500
Z 1.03 8.33 66.7

Table 1. Values of C2 and Z selected to match the heat transfer rate in liquid mercury
convection at Ra= 109 for each choice of ZC2.

with a number of experimental results. The value of C, which essentially shifts the
curves vertically (by changing the physical Ra which corresponds to a given model
parameter RaC2) was chosen so that the ODT data would approximately match the
experimental point shown at Pr = 0.025 (liquid mercury convection). Actual values
are shown in table 1. The required value of C changes only modestly because, at low
Pr, the heat transfer rate becomes independent of viscosity and hence independent of
the viscous cutoff parameter Z. We can see that the curve Nu(Pr) peaks at a value of
Pr which depends on the ODT parameter ZC2, and that for larger Prandtl numbers
the heat transfer varies strongly with Z, since viscosity is a significant factor in the
limit Pr → ∞. The peak value occurs at approximately Pr ∼ 20 for ZC2 = 823, Pr ∼ 5
for ZC2 = 104, and Pr ∼ 2 for ZC2 = 105. The precise location of the peak of Nu(Pr)
is not clear from the experimental data; however, numerical simulations by Kerr &
Herring (2000) suggest that it occurs near Pr = 2 for Ra =107. At large Pr, the trend
of Nu decreasing as Pr increases seen in the experiments of Ahlers & Xu (2001) and
Xia, Lam & Zhou (2002) also appears in the ODT data, although the rate of decrease
is slightly larger in the model.

A number of experimental results are shown in figure 2 for comparison to the ODT
data. In all cases, values of Nu were estimated from published scaling laws which
approximate the original data, which was not available in the literature. All of the
data shown were taken in cylindrical convection cells with aspect ratios of either 0.5
or 1.0. Changes in the aspect ratio modestly influence the value of Nu, as discussed
in Wu & Libchaber (1992). A brief discussion of the source of each of these results
is included below.

Sodium is the fluid with the lowest Prandtl number (Pr = 0.005) yet attained in a
convection cell (Horanyi, Krebs & Muller 1999). However, the highest Ra achieved
(5 × 106) is too low for direct comparison with other, higher Pr experiments at the
same Ra. It is therefore not included in figure 2. However, ODT simulations of
the Ra = 5 × 106 case with the three choices of ZC2 and C given in table 1 give
Nusselt numbers in the range of Nu= 5.1 to 5.2, which compares favourably to the
experimental result of Nu=5.3.

Liquid mercury has the lowest Prandtl number (Pr =0.025) for which a Rayleigh
number of 109 has been achieved. Cioni, Ciliberto & Sommeria (1997) report an
approximate scaling law Nu=0.14Ra0.26 in a unit aspect ratio cell over the range
5 × 106 � Ra � 5 × 109. This experiment suggests Nu 
 30 at Ra = 109. Takeshita et al.
(1996) report a scaling of Nu= 0.155Ra0.27 in the range 106 � Ra � 108, which
extrapolates to a significantly higher value of Nu 
 40 at Ra = 109. Hence, figure 2
presents the average (Nu = 35) of these two experiments. The earlier results of Rossby
(1969) are neglected because the maximum Ra achieved in that work was only 5 × 105.

In recent years, there have been many experimental studies of helium convection
(Pr 
 0.7) in cells with various aspect ratios. The work of Niemela et al. (2000)
indicates an approximate scaling of Nu= 0.124Ra0.309 over the enormous scaling
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range 106 � Ra � 1017, yielding an approximate value of Nu 
 75 at Ra = 109. This is
a different scaling exponent from the previous work of Castaing et al. (1989), which
reports Nu= 0.17Ra0.29 for Ra up to 1014, also for an aspect ratio 0.5 cell. However,
the actual Nu value at Ra = 109 is Nu 
 69 in the earlier work, which is only an
8% discrepancy. It is asserted in Niemela et al. (2000) that this difference is due
to inaccuracies in the properties of helium used to analyse the earlier results. Other
results for helium convection report approximate values of Nu at Ra =109 of Nu 
 80
(Wu & Libchaber 1992), Nu 
 75 (Chavanne et al. 1997), and Nu 
 70 (Chavanne
et al. 2001). Figure 2 therefore shows Nu= 75 for helium convection, representing a
number of experiments which indicate that Nu lies in the range 70 − 80 at Ra =109.

Several older experiments have studied convection in water (Pr 
 6) cells (Garon &
Goldstein 1973; Goldstein & Tokuda 1980; Tanaka & Miyata 1980). They cover
relatively limited ranges of Ra (typically only two orders of magnitude), including
Ra = 109. Reported scaling results for large-aspect-ratio experiments are Nu=
0.13Ra0.293 (Garon & Goldstein 1973) and Nu=0.145Ra0.29 (Tanaka & Miyata 1980),
which yield estimates Nu 
 56 and Nu 
 59, respectively, at Ra = 109.

Ahlers & Xu (2001) studied convection using four organic fluids with Prandtl
numbers in the range 4 � Pr � 34 for Rayleigh numbers up to 1011 using aspect ratio
0.5 and 1.0 cells. They do not report a scaling law for their data, but by reading from
their figures it can be estimated that the Nusselt number decreases from Nu 
 65.5 at
Pr 
 4 to Nu 
 64.5 at Pr 
 34 for the aspect ratio 0.5 cell. Results are a few per cent
lower for the unit-aspect-ratio cell. These results use a model to correct the measured
heat current at the sidewalls, and they note that if this model were applied to the
helium convection data of Niemela et al. (2000), the result would be to lower the
Nusselt number from Nu 
 75 to Nu 
 60 at Ra = 109. However, in figure 2 we chose
to present the helium data as published by the original authors, without corrections
suggested by subsequent authors.

Another experiment using a variety of liquids to study convection over a range of
Prandtl number in the same unit-aspect-ratio cell has been conducted by Xia et al.
(2002). They use nine working fluids covering the range 4.3 � Pr � 1352. The Rayleigh
number range is 2 × 107 � Ra � 3 × 1010, although no single fluid spans this entire
range. They do not report results for individual fluids, but instead summarize their
data with the approximate relationship Nu= 0.14Pr−0.03Ra0.297. This scaling is used to
produce the Nu(Pr) curve shown in figure 2. At Pr = 4, their results are very similar to
the (corrected) results of Ahlers & Xu (2001), but the decrease of Nu as Pr increases
is more pronounced in their work.

The scaling of Nu with Ra at Pr 
 2750 has been explored using electrochemical
convection by Goldstein, Chiang & See (1990). They report Nu 
 0.0659Ra1/3 over
the range 3 × 109 � Ra � 5 × 1012 in a large-aspect-ratio cell. Extrapolating this
scaling to Ra = 109 gives Nu 
 66, which is 25% larger than an extrapolation of the
results of Xia et al. (2002) would give for the same Ra and Pr.

Comparing ODT and experimental data in figure 2, we see that there is good
agreement with the mercury data, since the ODT parameter C was chosen to achieve
this. The ODT results for ZC2 = 823 and ZC2 = 104 both fall near the range of
observed Nu values for helium. The ZC2 = 105 data underpredict Nu for He but
match the water data well. The ZC2 = 104 and ZC2 = 105 data bracket the results of
Ahlers & Xu (2001) and Xia et al. (2002). Simulation and experiment both exhibit a
trend of decreasing Nu as Pr increases, but the trend is slightly stronger in the ODT
data than in the experiments. The ZC2 = 823 data best match the electrochemical
convection result (the value ZC2 = 823 was selected to match that experiment), which
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Figure 3. Nu as a function of Ra for ZC2 = 104 and C2 = 1200. Symbols are ODT simulation
results for �, Pr =0.025; �, 0.7; �, 4; �, 1352. Lines are reported fits to experimental data
for Pr = 0.025 from Cioni et al. (1997) (dashed line), Pr = 0.7 from Niemela et al. (2000) (solid
line), Pr =4 from Ahlers & Xu (2002) without sidewall heat loss correction (dot-dashed line),
and Pr= 1352 from Xia et al. (2002) (long-dashed line).

indicates a much larger value of Nu than would be expected based on the results of
Xia et al. (2002). No attempt to resolve this discrepancy is made here.

Figures 3 and 4 illustrate the dependence of Nu on Ra in the ODT model for
ZC2 = 104 and 105, respectively, and several different values of Pr. Experimental
results shown for comparison were selected to be representative of a wide range of
Pr values; all possible experiments cannot be shown without loss of clarity. The
vertical axis shows NuRa−1/3, so that horizontal lines would indicate purely classical
scaling. All ODT data exhibit approximate scaling exponents in the range 0.27 to
0.33, depending on Pr and Ra. Plotting NuRa−1/3 also magnifies differences between
ODT and experimental results, since actual values of Nu vary by more than two
orders of magnitude while values of NuRa−1/3 vary only by a factor of about two.

For ZC2 = 104 (figure 3), the ODT data agree very well with the mercury convection
data of Cioni et al. (1997), with the largest discrepancy being only about 15%. The
Pr = 0.7 ODT results match the helium data of Niemela et al. (2000) to within 5%,
and the high-Prandtl-number case plausibly matches the data of Xia et al. (2002),
although the range of Rayleigh numbers do not overlap. However, the ODT Nu
values for Pr= 4 consistently exceed those of Ahlers & Xu (2002) by about 25%. The
experimental data shown in figure 3 neglect the sidewall heat-loss model proposed by
Ahlers & Xu (2002), which would lower the experimental Nu values even further.

In figure 4, ODT data for ZC2 = 105 are compared to data from the same experi-
ments as in figure 3. However, the data from Ahlers & Xu (2002) is shown with
correction from the sidewall heat-loss model, and the data from Niemela et al. (2000)
is also shifted downward according to this correction as suggested by Ahlers &
Xu (2002). This allows a consistent comparison, and is not meant to imply that
either choice is necessarily correct. For this larger value of ZC2, the model data at
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Figure 4. Nu as a function of Ra for ZC2 = 105 and C2 = 1500. Symbols are ODT simulation
results for �, Pr = 0.025; �, 0.7; �, 4; �, 1352. Lines are reported fits to experimental data
for Pr = 0.025 from Cioni et al. (1997) (dashed line), Pr = 0.7 from Niemela et al. (2000) as
corrected for sidewall heat loss by Ahlers & Xu (2002) (solid line), Pr= 4 from Ahlers &
Xu (2002) with sidewall heat loss correction (dot-dashed line), and Pr= 1352 from Xia et al.
(2002) (long-dashed line).

low Prandtl number exhibit a larger scaling exponent of Nu with Ra than is seen
for ZC2 = 104 or in the data of Cioni et al. (1997). These results are closer to the
experimental data of Takeshita et al. (1996), however (not shown). The data for
Pr= 0.7 and Pr = 4 are also closer to the classical scaling of 1/3, but differ from
the experimental data by less than 10% despite the difference in scaling exponents.
The Pr =1352 data exhibit approximately classical scaling and are lower than the
extrapolated results of Xia et al. (2002) by about 50%. Overall, it is seen that increasing
ZC2, in addition to shifting the peak of the Nu(Pr) curve in figure 2, also results in
Nu(Ra) scaling which is closer to the classical value 1/3 over the range of Ra simulated.

Figures 2 to 4 demonstrate that ODT reproduces the qualitative trends observed
in convection cell experiments. Quantitative agreement depends on the interpretation
of sidewall heat loss and the effects of aspect ratio, which are not represented in the
model. Hence, it is not possible to determine if there exists a particular choice of
parameters C and ZC2 for which the model would correctly reproduce Nu(Ra, Pr) in
an infinite-aspect-ratio system. However, the values of Nu produced by the model are
adequate for study of the core fluctuations, which requires only that the heat transfer
rate approximate the physical value for a given choice of the Rayleigh and Prandtl
numbers.

4.2. Core temperature fluctuations

In the ODT simulations, a significant temperature gradient is observed in the core of
the convection cell. The presence of a temperature gradient (on average) in experi-
mental cells has not been confirmed or ruled out (to our knowledge). Its appearance
in the model simulations is explained using a simple flux-balance argument.



Stochastic model for high-Rayleigh-number convection 187

(Nu2/Ra C2Pr)1/3

α

10–5 10–4 10–3 10–2
10–4

10–3

10–2

10–1

100

Figure 5. Magnitude of the core temperature gradient. Symbols are ODT simulation results
for three different values of ZC2: �, ZC2 = 823; �, 104; �, 105. The line is α = 37.4 (Nu2/

RaC2Pr)1/3.

Assuming a constant temperature gradient across the core region, the average
temperature 〈δT (y)〉 is expressed in the form

〈δT (y)〉
�T

= 1
2

+ α

(
y

Λ
− 1

2

)
, (4.1)

which defines the dimensionless gradient α as the ratio of the average gradient in the
core to the mean gradient �T/Λ. The core gradient can be quite substantial, often
exceeding α ∼ 0.1 for low values of Ra and Pr.

The magnitude of the core temperature gradient α is estimated by considering the
transport properties of the interior. The heat flux F through the core is estimated
for eddies comparable in size to the cell height Λ (these largest eddies dominate
transport) as

F ∼ Λ

τΛ

α�T, (4.2)

where τΛ is the eddy turnover time and α�T is the typical temperature variation
across the core of the cell. Assuming this temperature difference is the driving force
behind this transport, the typical turnover time is τΛ ∼ (gC2αβ�T/Λρ0)

−1/2. The flux
is then

F ∼ κ�T

Λ
α3/2(RaC2Pr)1/2. (4.3)

This flux must balance the flux at the wall, given by F ∼ Nu κ�T/Λ. Enforcing this
balance yields

α ∼
(

Nu2

RaC2Pr

)1/3

. (4.4)

Figure 5 demonstrates this correlation using values of α determined by fitting the
average temperature profile in each ODT simulation to a line in the middle 3/4 of the
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Figure 6. Magnitude of temperature fluctuations in the interior. Symbols are ODT
simulation results for ZC2 = 104 at �, Pr= 0.025; �, 0.7; �, 4; �, 1352; the solid line is
δTrms/�T = 0.37Ra−0.145, a reported fit to Pr= 0.7 experimental data by Niemela et al. (2000).

cell. The correlation is independent of the value of Z, which is expected since (4.4) is
based on large-scale transport. The value of C does matter, since this parameter sets
the large-eddy turnover rate and, hence, the overall heat transfer.

The larger values of the core temperature gradient (α � 0.1) shown in figure 5
occur at low Pr. The high molecular diffusivity in these cases generates a large
flux at the wall, which must be balanced in the core by turbulent transport along
a large temperature gradient. At low Pr, the large value of α probably influences
the dynamics of the thermal boundary layers and consequently plays a role in the
observed non-classical scaling of Nu with Ra.

Figure 6 shows the magnitude of the temperature fluctuations observed in the core
of the cell for the representative cases presented in figures 3 and 4. In this study,
the fluctuations δTrms are defined as the root-mean-square (r.m.s.) deviations from
the average temperature profile, and the ‘core’ is defined as the middle 1/4 of the
cell. This definition eliminates the spatial variability due to the mean temperature
gradient, making the data comparable to experimental data taken at a single point.
The experimentally observed temperature fluctuation magnitude for helium (Pr =0.7)
is also shown (Niemela et al. 2000), and the agreement with the ODT data for
ZC2 = 104 is excellent (errors less than 10%) at this Prandtl number. This value of
ZC2 also gave the best agreement with the corresponding Nusselt-number data.

The Pr dependence of ODT results for δTrms , which is evident in figure 6, is further
illustrated in figure 7. For any given ZC2, there is a minimum value of δTrms which
occurs at Pr ∼ 200 for ZC2 = 823, but shifts to Pr ∼ 50 for ZC2 = 104 and Pr ∼ 20
for ZC2 = 105. Figure 7 also shows that δTrms depends only weakly on ZC2 at low
Prandtl number. For comparison, experimental values for helium (Niemela et al.
2000) and water solutions at several Prandtl numbers at a larger Ra value (Daya &
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Figure 7. Magnitude of temperature fluctuations in the interior as a function of Pr at
Ra= 109. �, ODT data for ZC2 = 823; �, ZC2 = 104; �, ZC2 = 105. �, experimental data for
helium (He) at the same Rayleigh number (Niemela et al. 2000); �, experimental data for
water solutions at a number of Pr values for Ra= 2 × 109 (Daya & Ecke 2002).

Ecke 2002) are also shown. Again, the helium data compare favourably to the ODT
simulations, and the water solutions exhibit the same trend with Pr, although the
absolute magnitude is smaller by a factor of approximately two.

Estimation of the Ra scaling of the ODT core temperature fluctuations δTrms for
many values of Pr indicated that the scaling exponent exhibits a strong dependence on
the Prandtl number. (Simulations at Ra = 108 and Ra = 109 were used to calculate the
scaling exponents.) At the smallest Prandtl number simulated (Pr = 0.025), the scaling
exponent is approximately −0.11. It slowly becomes more negative until Pr reaches
the value corresponding to the minimum of δTrms(Pr) seen in figure 7 (a value which
varies slightly with ZC2), and then decreases rapidly to −0.3 for Pr = 1352. These
scaling exponents show only weak dependence on the value of ZC2. For Pr =0.7,
the ODT value of −0.13 compares favourably to the experimental values of −0.145
(Niemela et al. 2000) and −0.147±0.005 (Castaing et al. 1989). For Pr= 5.5, Daya &
Ecke (2001) report an exponent of −0.10 ± 0.02, which is less negative than the
model exponent of −0.15. Daya & Ecke (2002) also report that the scaling exponent
becomes more negative as Pr increases, reaching −0.18 for Pr= 10 (compared to
−0.17 for ODT at Pr = 10). Thus, the ODT exponents follow the trend found by
Daya & Ecke (2002), although the dependence on Pr is somewhat weaker.

A simple picture of the temperature fluctuations yields a crude estimate of the
Ra and Pr dependence of δTrms . In this view, there are two distinct sources of core
temperature fluctuations. One is the mixing of the core temperature gradient by eddies,
whose contribution to the mean-square core temperature fluctuations is labelled δT 2

core.
The other is the transport of fluid elements from the thermal boundary layers directly
to the core region by plumes which reach the core with minimal diffusive mixing; this
contribution is labelled δT 2

BL. Assuming that these two contributions are statistically
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independent, the total r.m.s. temperature fluctuation is given by (see Appendix)

δT 2
rms = δT 2

core + δT 2
BL. (4.5)

The contribution δT 2
core due to the core fluctuations is proportional to (α�T )2 (where

α is given by (4.4)), since this is the total temperature variation across the core
region. Estimating the boundary-layer contribution requires an understanding of the
frequency with which large eddies (the ODT equivalent of plume motion) transport
a substantial fraction of the boundary layer directly into the core region. Each eddy
transports a ‘blob’ of fluid whose width scales as Λ/Nu (the boundary-layer thickness)
with a temperature fluctuation of order �T . These blobs appear in the core region
with some frequency τ−1

b and survive in the core for some lifetime τl � τb. Their total
contribution to the temperature fluctuations is

δT 2
BL ∼ �T 2Nu−1(τl/τb), (4.6)

based on a space–time average over many blobs. The typical frequency τ−1
b is estimated

from the energy released when a blob with mass of the order of Λβ�T/Nu is
transported a distance of order Λ:

τ−1
b ∼

√
gβ�T

Nuρ0Λ
. (4.7)

The lifetime τl of the blob in the turbulent core is more difficult to determine, but
a plausible estimate is to use the turnover time of the smallest (Kolmogorov-scale)
eddies. This assumes that the typical blob which breaks off from the thermal boundary
layer is smaller than the Kolmogorov scale, an assumption which has been verified
in ODT for larger Prandtl numbers (Pr � 1). Therefore, the smallest eddies are the
relevant ones for blob break-up and dissipation. The blob lifetime therefore scales as
τl ∼ (Λ2/ν)Re−3/2, where Re is the Reynolds number based on the velocity scale in
the core of the cell where the blob is broken up (not the ‘wind’ velocity scale). It is
shown in § 4.3 that Re in the core of the cell scales as Re3 ∼ RaNuPr−2. Combining
these time scales yields

δT 2
BL ∼ �T 2 Pr1/2

Nu2
(4.8)

for the boundary-layer contribution, and an overall expression for δTrms of(
δTrms

�T

)2

= A

(
Nu2

RaC2Pr

)2/3

+ B
Pr1/2

Nu2
, (4.9)

where A and B are constants. In the limit Pr → 0, the core gradient is large and
the boundary-layer contribution to δTrms is negligible. This yields the classical
result δTrms ∼ �T (RaPr)−1/9 if Nu ∼ (RaPr)1/3 (Siggia 1994). This is comparable to
the observed ODT Rayleigh number scaling exponent of −0.11 in the Pr = 0.025
case. In the other limit, Pr → ∞, the core gradient vanishes and the boundary-
layer contribution increases until it dominates the fluctuations. In this case,
δTrms ∼ �T Ra−1/3 (assuming Nu ∼ Ra1/3), which is consistent with the value −0.3
inferred from the Pr =1352 ODT data. Intermediate values of Pr yield exponents that
lie between these limits, since the sum of two scaling functions with distinct exponents
mimics a scaling function with an intermediate exponent value. The different scalings
with Ra observed at different values of Pr in figure 6 may therefore be attributed
to changes in the relative contributions of the two terms in (4.9). The fluctuation
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Figure 8. Scaling of the temperature fluctuations, as suggested by a simple model with two
sources of fluctuations. �, ODT simulation data for ZC2 = 823; �, ZC2 = 104; �, ZC2 = 105.
The line is a fit of (4.9) with A = 75 and B = 0.015.

magnitude estimate of (4.9) also produces a minimum at a Pr value where both terms
contribute substantially to the total, which is consistent with the ODT data shown in
figure 7. At small Pr, the first term dominates and δTrms is a decreasing function of
Pr, as seen in figure 7. At large Pr, the second term in (4.9) increases with Pr since
Nu decreases with Pr for large values of Pr (see figure 2). This causes the increase
in δTrms with Pr as Pr → ∞, as seen in figure 7. For a fixed value of Pr, the core
term always dominates in the limit Ra → ∞ (assuming the Nu(Ra) scaling exponent
exceeds 1/5).

Figure 8 illustrates the scaling suggested by (4.9) for all of our ODT simulation
data. The results are shown on a logarithmic scale since the normalized temperature
fluctuations vary over several orders of magnitude. This illustrates the parameter
regime where the core contribution dominates (upper right-hand portion of figure 8)
as well as the regime where the boundary layer dominates and ((δTrms/�T )Nu)2Pr−1/2

is approximately constant (lower left-hand portion of figure 8). The line shows a fit
of (4.9) to the data. However, while the same value of A matches all three values of
ZC2, it is clear from figure 8 that slightly different values of B would best match the
data for each value of ZC2. Hence, although the core contribution to δTrms appears
to be independent of ZC2, the boundary-layer contribution apparently increases as
ZC2 increases. Figure 8 shows that, although (4.9) gives good agreement with the
ODT data in the limiting cases where either the core or boundary-layer contributions
dominate, it is imperfect in the portion of parameter space where both are significant.
The assumption of statistical independence of the two contributions is probably at
least partially responsible for this error. However, even at its worst, the estimate of
(4.9) is within 40% of the ODT results, which is good considering that δTrms varies
by over two orders of magnitude.
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Figure 9. Rescaled probability density p of a temperature fluctuation δT (lines) for Pr = 5.5,
Ra= 2 × 109. The three lines correspond to ODT results for the three values of ZC2:
dash-dotted for ZC2 = 823, dashed for ZC2 = 104, and solid for ZC2 = 105. The shape is
independent of ZC2. Here, 〈δT 〉 = 0.5�T and δT 2

rms is the variance of the p.d.f. For comparison,
experimental data in two distinct cell geometries (�, cylindrical geometry; �, rectangular
geometry) with the same Ra and Pr are also shown (Daya & Ecke 2001).

It is worth recognizing that the separation of the temperature fluctuations into two
distinct sources is somewhat artificial, since it is obvious that all fluctuations must
ultimately originate in the thermal boundary layers. It is perhaps better to think of
the contribution of the core temperature gradient as representing the effects of fluid
elements which interact significantly with their environment while transiting from the
boundary layer to the cell centre (producing the average temperature gradient), while
the explicit boundary-layer contribution to (4.9) represents the effects of plumes which
reach the cell centre with minimal interaction. In ODT, the difference between these
two mechanisms arises because fluid elements may transit from boundary layer to
cell centre either indirectly, as a result of a large number of eddy mappings (allowing
some equilibration with the environment along the way) or directly as a result of only
one or two mappings (allowing little time for equilibration).

To study the statistics of the temperature fluctuations in the core of the cell, we
collected temperature values in narrow spatial intervals 1/64 of the cell height Λ

in length. Figure 9 shows the probability density function (p.d.f.) of temperature
values observed at the centre of the cell, normalized by δTrms (the square root of the
p.d.f. variance), for Pr= 5.5 and Ra =2 × 109. Results for all three values of ZC2 are
shown. Generally, ODT p.d.f. shapes do not appear to depend on the value of ZC2

except when extreme fluctuations (ten or more standard deviations) are considered.
The p.d.f. shape is approximately exponential out to at least 6 standard deviations.
Experimental data (Daya & Ecke 2001) for the same Ra and Pr are also shown in
figure 9, and the p.d.f. shapes are nearly identical. These data were collected in two
different geometries – a cylindrical cell and a square cell – yet the p.d.f. shapes match
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Figure 10. Rescaled probability density p of a temperature fluctuation δT for Pr = 0.7 and
ZC2 = 105, using the same normalization as in figure 9. ODT results (lines) for four distinct Ra
values (Ra =2 × 107, solid line; 2 × 108, dashed line; 2 × 109, dash-dotted line; and 2 × 1010,
dash-dot-dotted line) are shown, but the shapes are indistinguishable to 6 standard deviations.
For comparison, experimental data (symbols) for helium convection (Castaing et al. 1989) is
also shown for four Ra values between 108 and 1012.

each other and ODT. However, the values of δTrms used to normalize the p.d.f.s are
different in all three cases. Hence, it seems that, while the value of δTrms may depend
strongly on geometry, the p.d.f. shape is more universal and is correctly generated
by ODT. This suggests that the physical mechanism which detemines the shape is
relatively simple and accessible to the model.

It was recognized in the helium convection experiments of Castaing et al. (1989) that
the universal shape of the p.d.f. when normalized by δTrms applies over a wide range
of Rayleigh numbers. Figure 10 illustrates this collapse for Pr = 0.7 for four values
of Ra spanning three orders of magnitude. The results for ZC2 = 105 are shown here
and in subsequent figures because more statistics were collected for those simulations
than for smaller values of ZC2, but, as previously noted (see figure 9), the shape
does not depend on ZC2 over the range of fluctuations shown. Again, the simulation
p.d.f.s are approximated well by an exponential form within six standard deviations
of zero. The experimental data of Castaing et al. (1989) are also shown in figure 10
for comparison. To facilitate a direct comparison, histogram data from their paper
were digitized and normalized to produce the approximate p.d.f.s shown in figure 10.
While there is excellent agreement for negative fluctuations, the experimental p.d.f.
exhibits an asymmetry which the (inherently symmetric) model does not have.

The collapse of the p.d.f.s must ultimately fail at large deviations because |δT −〈δT 〉|
is bounded by 0.5�T owing to the finite cell size. This breakdown is observed in ODT
as a long non-exponential tail in the p.d.f. followed by the truncation of the p.d.f. at
|δT − 〈δT 〉| =0.5�T . The separation of the p.d.f.s is seen in figure 10 beginning at
approximately 8 standard deviations.
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Figure 11. Rescaled probability density p in ODT of a temperature fluctuation δT for
Ra= 2 × 109, ZC2 = 105, and five Pr values: 0.1, dash-dot-dotted line; 0.7, dashed line; 4,
dash-dotted line; 100, long-dashed line; and 1352, solid line. The rescaled probability density
of large fluctuations increases with Pr.

The collapse of the p.d.f. cores illustrated in figures 9 and 10 is tested for different
Pr values (at fixed Ra) in figure 11. Although the low-Pr case is more noisy than the
others, the Pr =0.1, Pr= 0.7 and Pr = 4 p.d.f.s appear to overlap within five standard
deviations, of the average temperature value. At very large deviations, the p.d.f.s
progressively diverge from each other, with the probability of very large deviations
increasing with Pr. However, the Pr= 100 and Pr= 1352 simulations exhibit sharper
p.d.f. cores and do not match the others. Hence, it appears that the collapse of the
p.d.f.s proposed by Castaing et al. (1989) does not apply to high-Pr data in the ODT
model.

The fact that the rescaled p.d.f. shape appears to be independent of Ra and
Pr for Pr < 100 indicates that the same mechanism is operative over this wide
range of parameter values. Based on the previous analysis of the magnitude of
the temperature fluctuations which led to (4.9), this shape is apparently the result
of the transport of fluid elements from boundary layer to core via the ‘indirect
transport’ (or core gradient) process in which a fluid element interacts significantly
with its environment while passing from boundary layer to cell centre. This is inferred
because this contribution dominates the estimate of δTrms at low Pr values in (4.9).
The transition to a different p.d.f. shape at larger Pr values is seen in simulations
in which the ‘direct transport’ mechanism, in which plumes move from boundary
layer to cell centre without much equilibration with their environment during transit,
becomes the dominant contribution to δTrms in (4.9). Hence, the two distinct p.d.f.
shapes are apparently indicative of the two distinct contributions to the magnitude
of the density fluctuations δTrms . This analysis suggests that observations of the p.d.f.
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Figure 12. Probability density p in ODT of a temperature fluctuation δT for Ra= 2 × 109,
Pr = 0.7, and ZC2 = 105, at 5 distinct vertical locations: 0.004Λ, solid line; 0.0078Λ, dashed
line; 0.031Λ, dash-dotted line; 0.25Λ, dash-dot-dotted line; and 0.5Λ, long-dashed line. The
thermal boundary-layer thickness in this case is approximately 0.008Λ.

in high-Pr convection experiments, such as those of Xia et al. (2002), might reveal a
different shape from that which has been previously seen experimentally.

The shape of the p.d.f. of temperature values depends strongly on the vertical
location within the convection cell. A series of p.d.f.s at different heights in the lower
half of the cell is shown in figure 12. The data are taken from the Ra = 2 × 109,
Pr = 0.7 simulation. The mean value of each p.d.f. increases with the distance from
the lower plate, and the shape changes as well. The lowest location shown lies within
the thermal boundary layer (the boundary-layer thickness is about 0.008Λ in this
case), and the second lowest location is just above the boundary layer. The others are
within the convective core of the cell.

Figure 13 shows the p.d.f.s of temperature values at the off-centre location y =0.25Λ

for the same Pr= 0.7 simulations as figure 10. Again, the results are normalized by
the r.m.s. value of the temperature fluctuations. Since the location lies closer to the
bottom plate (where δT = 0) than to the top (where δT = �T ), it is not surprising that
negative values of δT − 〈δT 〉 are much more frequent than positive values. Long tails
which vary slightly with Ra are evident on the left-hand side of the p.d.f., with larger
Ra giving a higher probability of large negative deviations. The right-hand side of
the p.d.f. falls off much more steeply than the p.d.f. in the cell centre (see figure 10).
Apparently, the increased distance from the upper boundary layer (compared to the
cell centre p.d.f.) results in a faster decrease in the p.d.f. To our knowledge, there
are no published experimental data on off-centre temperature fluctuation p.d.f.s for
comparison with the model data. Off-centre p.d.f.s at y = 0.75Λ (not shown) are
approximately a mirror image of figure 12, as expected.

Off-centre p.d.f.s (at y =0.25Λ) for five different Prandtl numbers are shown in
figure 14. As in figure 11, the large-Pr and small-Pr p.d.f.s exhibit two distinct shapes
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Figure 13. Rescaled off-centre probability density p in ODT of a temperature fluctuation δT
for Pr = 0.7, ZC2 = 105, and the same Ra values shown in figure 10 (Ra= 2 × 107, solid line;
2 × 108, dashed line; 2 × 109, dash-dotted line; and 2 × 1010, dash-dot-dot line). The position
is y = Λ/4.
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Figure 14. Rescaled off-centre probability density p in ODT of a temperature fluctuation δT
for Ra=2 × 109, ZC2 = 105, and five values of Pr: 0.1, dash-dot-dotted line; 0.7, dashed line;
4, dash-dotted line; 100, long-dashed line; and 1352, solid line. The rescaled probability density
of a large negative fluctuation increases with Pr, as in figure 11.
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at small standard deviations. Also, there is a higher probability of large-deviation
events at higher Pr. The asymmetry due to the proximity to the lower cell boundary
is again evident.

4.3. Core velocity fluctuations

The magnitude of the ODT velocity fluctuations in the core of the cell can be
estimated using energy conservation (2.12) and the characteristics of the turbulent
cascade, which the model mimics by design in the absence of a temperature gradient.
Because the temperature is nearly constant in the core of the cell, the turbulent
cascade operates with little interference in most of the cell. It is therefore plausible
to estimate the energy dissipation based on the cell size Λ and the typical velocity
scale U in the cell core. The energy input to the cascade at the large scale is U 3/Λ;
balancing this against the dissipation (assuming a steady cascade) implies

U 3

Λ
∼ ν〈(∂yv)2〉. (4.10)

The dimensionless energy dissipation ε is therefore

ε ≡ Λ3

ν2

∫
〈(∂yv)2〉dy ∼ U 3Λ3

ν3
≡ Re3, (4.11)

where Re ≡ UΛ/ν is the Reynolds number. To establish a quantitative relationship,
the velocity scale U is defined as U ≡

√
〈v2〉 ≡ vrms , where the average is taken over

the middle 1/4 of the cell (to avoid wall effects) and over the time history of the
simulation. Hence, the ODT Re is a measure of the r.m.s. velocity fluctuations in the
core. Using this definition, the proportionality between Re3 and energy dissipation ε

is obeyed in the ODT simulations to within a few per cent.
A corollary of this scaling, due to the energy conservation equation (2.12), is a

relationship between the magnitude of the velocity fluctuations Re and the heat
transfer Nu:

ReP r = 1.4C−1/3(RaPr(Nu − 1))1/3, (4.12)

with the constant of proportionality, 1.4C−1/3, determined by fitting the simulation
data for all values of ZC2. Although superficially similar to one of the relationships
used by Grossmann & Lohse (2000), (4.12), in fact, differs from the previous
result because Re is defined in terms of the core velocity fluctuations, whereas in
Grossmann & Lohse (2000) it is defined in terms of the large scale ‘wind’ velocity.
This relation is demonstrated for the ODT simulations in figure 15. Hence, by
combining energy conservation with the assumption of a turbulent cascade, a non-
trivial relationship (4.12) for the magnitude of the ODT velocity fluctuations has been
obtained, in agreement with the simulation data.

A few experiments have attempted to measure velocity fluctuations and estimate
Re in the convection cell. Using published scaling estimates for Re and Nu, the
experimental results for different Prandtl numbers are given approximately by:

RePr = (RaPrNu)1/3 ×




2.1(10−9Ra)0.004 (Pr = 0.025, 5 × 106 � Ra � 5 × 109),
1.9(10−9Ra)0.057 (Pr = 0.7, 108 � Ra � 1014),
2.0 (Pr = 7, 3 × 107 � Ra � 4 × 109),

(4.13)

The liquid mercury data (Pr = 0.025) are taken from Cioni et al. (1997); the helium
data (Pr = 0.7) are from Castaing et al. (1989), and the water (Pr =7) data from
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Figure 15. The energy conservation relation (4.12) giving the magnitude of the (non-
dimensionalized) core velocity fluctuations Re. Symbols are simulation results for �, ZC2 =
823; �, 104; �, 105. The solid line is (4.12).

Tanaka & Miyata (1980). These experimental results do not all scale identically to
the ODT relation (4.12), but the deviations only amount to a few per cent in Re over
three orders of magnitude in Ra in the worst case. The experimentally determined
constants in the scaling relations indicate that the ODT Re values are about 1/5 of
the experimental values (for C2 ∼ 103), which is good considering the oversimplified
nature of the ODT velocity scalar v. These experimental results indicate no significant
dependence of the prefactor on Prandtl number at Ra = 109.

The Prandtl-number dependence of Re has been studied in a single apparatus
using a variety of fluids to cover the range 3 � Pr � 1205 (Lam et al. 2002). Based
on the r.m.s. fluctuations of the velocity magnitude in the core, they report that
Re = 0.84Ra0.40±0.03Pr−0.86±0.01. Combining this with Nu= 0.14Ra0.3Pr−0.03 measured
in the same apparatus (Xia et al. 2002) gives

RePr 
 3.2Pr−0.18(RaPrNu)1/3, (4.14)

which indicates the prefactor in (4.12) decreases slowly with Pr, in contrast to the ODT
data. However, the experimental Rayleigh numbers at Pr 
 102 to 103 are much lower
than those simulated by ODT, and may not exhibit a fully developed cascade. This
would violate the assumptions that led to (4.12), and hence, at higher experimental
Ra, it is possible that this Pr dependence may weaken and the results become more
similar to those of ODT.

The p.d.f. of fluctuations in the value of the ODT velocity scalar in the centre
of the cell is shown in figure 16, along with experimental data (for vertical velocity
fluctuations) from Daya & Ecke (2001). The data is for Pr= 5.5 and Ra = 2 × 109, and
was collected in both a cylindrical and a square cell (as were the temperature p.d.f.s
shown in figure 9). As was the case for the temperature fluctuations, the magnitude
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Figure 16. Rescaled probability density p of a core velocity fluctuation v. ODT simulation
data (solid line) for Pr = 5.5, Ra= 2 × 109 and ZC2 = 105. Experimental data from the cell
centre in two distinct geometries (�, cylindrical geometry; �, rectangular geometry) for the
same Ra and Pr are shown for comparison (Daya & Ecke 2001). Also shown is a Gaussian
p.d.f. (dashed line).

of the r.m.s. velocity fluctuation vrms used to scale the p.d.f.s is different for the two
geometries and for ODT, but the shape of the rescaled p.d.f. appears to be more
universal. The shape is nearly Gaussian, as has also been reported in the experiments
of Ashkenazi & Steinberg (1999) for Pr = 93. Off-centre velocity fluctuation p.d.f.s
(not shown) taken at y = 0.25Λ and y = 0.75Λ showed no significant dependence of
the p.d.f. shape on position within the cell core (in contrast to the temperature p.d.f.s).

4.4. Fluctuations in open systems

To further illustrate the importance of the thermal boundary layers in shaping the
core temperature fluctuation p.d.f., ODT simulations were also performed with jump-
periodic boundary conditions imposed on δT rather than fixed-temperature plates
at y = 0 and y = Λ. This eliminates the thermal boundary layer entirely, and the
simulation corresponds to an infinitely long unstable temperature gradient. Without
plates, there is no natural way to truncate the range of possible eddy sizes in the model,
so a largest eddy size equal to the periodicity length Λ was imposed. Simulations
with Rayleigh numbers in the range 3 × 109 � RaC2 � 3 × 1012 were performed for
Prandtl number values Pr = 0.1, 1.0 and 10, and ZC2 = 105. The resulting p.d.f.s had
the same shape in all cases; an example is shown in figure 17. The shape is close to a
Gaussian, unlike the p.d.f. which results from the simulation with fixed-temperature
plates, which is shown for comparison. The deviation from the Gaussian p.d.f. is
the result of the mixing of a temperature gradient which extends over many integral
scales, as has been observed experimentally by Gollub et al. (1991) and Jayesh &
Warhaft (1991). This effect has also been seen in stochastic models very similar to the
one presented here (Holzer & Pumir 1993; Wunsch 1998), and is arguably a common
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Figure 17. Rescaled probability density p of a temperature fluctuation δT in an open
(periodic) system for RaC2 = 3 × 1012, Pr= 1 and ZC2 = 105. The p.d.f. shape (solid line) is very
close to a Gaussian (dash-dotted line), but very different from the p.d.f. in a closed (fixed-
temperature boundary condition) simulation with the same parameter values (dashed line).

feature of such models in this configuration (Falkovich, Gawedzki & Vergassola 2001).
However, the difference between the model p.d.f. in the open and closed configurations
demonstrates that this effect of mixing against the temperature gradient is negligible
when fixed plates are present, since the p.d.f. in the closed configuration is very non-
Gaussian even at small deviations and exhibits a much larger probability of large
deviations. This comparison illustrates the fact that the p.d.f.s generated by the model
for closed cells are determined by the transport of boundary-layer fluid into the cell
interior, and are not an artefact peculiar to models based on stochastic maps.

Heat transfer in this configuration is determined entirely by the large scales. The
heat flux is given by V �T/Λ, where the velocity scale V is given by V 2 ∼ gΛβ�T/ρ.
Combining these yields Nu ∼ RePr ∼

√
RaPr. These scalings correspond to the so-

called ‘ultimate regime’ of thermal convection (Kraichnan 1962). The ODT simulation
results are summarized by Nu= 0.0075C

√
RaPr and RePr = 0.28

√
RaPr. For Pr =1,

Nu ∼ Ra1/2 has also been observed in direct numerical simulations of this configuration
by Lohse & Toschi (2003).

The magnitude of the temperature fluctuations δTrms should be constant, according
to (4.9) with these scalings and B = 0. This is not quite true in the simulations,
as δTrms/�T slowly decreases with increasing RaC2 with a scaling exponent of
approximately 0.02 ± 0.01. This possibly indicates a weak influence of the molecular
parameters (κ and ν) on the magnitude of the temperature fluctuations.

4.5. Power spectra

To study the power spectra in the interior of the one-dimensional domain, spectra
were computed using the middle half of the temperature and velocity profiles (with
the mean slope subtracted). Spectra from many profiles in each simulation were
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Figure 18. Normalized velocity spectra in the centre of the domain for Pr =0.025 (dashed
line), Pr = 0.7 (dash-dotted line) and Pr = 1352 (dotted line), from the highest Rayleigh number
simulated for each Prandtl number in the ZC2 = 105 set of simulations. Also shown is the
expected power law for a Kolmogorov cascade (solid line with slope −5/3) and the spectrum
from the open (periodic) simulation with RaC2 = 3 × 1012 and Pr = 1 (long-dashed line).

averaged to produce a clean result. Debate continues as to whether the interior
of a physical Rayleigh–Bénard cell exhibits a Kolmogorov or a Bolgiano–Obukhov
cascade (Siggia 1994; Ashkenazi & Steinberg 1999), but the ODT model appears to
choose the Kolmogorov cascade.

Figure 18 shows the velocity spectra for three different Prandtl numbers from
the ZC2 = 105 set of simulations. For each Prandtl number, the largest Rayleigh
number simulation is shown. The spectra have been shifted vertically so as to have
the same value at the smallest wavenumber. A line of slope −5/3, the scaling
exponent expected for a Kolmogorov (kinetic-energy) cascade, is also shown. Both
the Pr = 0.025 and Pr= 0.7 simulations have inertial ranges with slopes which are
very close to the Kolmogorov value. The Pr =1352 simulation does not appear to
have an inertial range owing to its large viscosity and correspondingly low Reynolds
number. Also shown is a spectrum from the open (periodic) system discussed in
the previous subsection, which is also consistent with the Kolmogorov cascade. At
high wavenumbers, the spectra exhibit a bump, or shoulder, as the inertial range
transitions into the dissipative range. This model artefact is due to the transition
from eddy mappings to viscous transport as the dominant dynamical mechanism as
wavenumber increases. It does not impact the statistical properties of the temperature
or velocity fields considered in the previous sections, which depend on the large-scale
dynamics of the flow.

Figure 19 shows the temperature spectra for the same simulations as figure 18. In
this case, all simulations exhibit inertial ranges with scaling exponents close to −5/3,
consistent with the Obukhov–Corrsin cascade for a passive scalar.
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Figure 19. Normalized temperature spectra in the center of the domain for Pr = 0.025 (dashed
line), Pr = 0.7 (dash-dotted line) and Pr= 1352 (dotted line), from the highest Rayleigh number
simulated for each Prandtl number in the ZC2 = 105 set of simulations. Also shown is the
expected power law for an Obukhov–Corrsin cascade (solid line with slope −5/3) and the
spectrum from the open (periodic) simulation with RaC2 = 3 × 1012 and Pr= 1 (long-dashed
line).

5. Conclusions
In this work, a model based on the stochastic application of a mapping function to

a one-dimensional domain, with a dynamical rule based on mixing-length arguments,
is applied to turbulent convection. Using only two adjustable parameters, the model
approximately reproduces heat-transfer rates measured in Rayleigh–Bénard cells over
six orders of magnitude in Ra and five orders of magnitude in Pr. Although the
model does not incorporate some effects which are significant in containers with finite
horizontal extent, the model can plausibly be used to study interior fluctuations, and
might usefully be applied to natural convecting systems (where sidewall effects are
unimportant) in the future.

The present study of temperature fluctuations in the core of a convecting cell
demonstrated good agreement between the model and the limited experimental
data available for both the overall magnitude of fluctuations and the shape of the
fluctuation p.d.f. However, simulations at larger Prandtl numbers and replacement of
the fixed-temperature plates at the top and bottom with a jump-periodic boundary
condition resulted in significant changes to the fluctuation magnitude and p.d.f. Also,
the fluctuation p.d.f. exhibited a strong dependence on vertical location. These results
were interpreted using a simple picture in which core fluctuations result from two
sources: direct transport of thermal-boundary-layer material into the core with little
mixing, and indirect transport, in which boundary-layer material undergoes significant
mixing with its surroundings before reaching the core. Changes in the p.d.f. shapes
were attributed to shifts in the relative importance of these two mechanisms, and
could be observable in large-Pr experiments. Also, a simple mixing-length argument



Stochastic model for high-Rayleigh-number convection 203

for the scaling of the magnitude of fluctuations was suggested by this picture and
shown to be compatible with the model as well as the available experimental data.

We thank Z. Daya and R. Ecke for helpful comments and for sharing their
experimental data. This work was supported by the US Department of Energy, Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

Appendix
To illustrate how the assumption of statistical independence of the two contributions

to δTrms leads to (4.5), we start by writing the random variable δT as a sum of two
statistically independent random variables denoted δT1 and δT2. In other words,

δT ≡ δT1 + δT2. (A 1)

Squaring and averaging this definition yields

〈δT 2〉 =
〈
δT 2

1

〉
+

〈
δT 2

2

〉
+ 2〈δT1δT2〉, (A 2)

where 〈 . . . 〉 denotes an ensemble average, while averaging and then squaring yields

〈δT 〉2 = 〈δT1〉2 + 〈δT2〉2 + 2〈δT1〉〈δT2〉. (A 3)

The r.m.s. fluctuation δTrms of δT is defined as

δT 2
rms ≡ 〈δT 2〉 − 〈δT 〉2. (A 4)

Substituting (A 2) and (A 3) into (A 4) yields

δT 2
rms =

(〈
δT 2

1

〉
− 〈δT1〉2

)
+

(〈
δT 2

2

〉
− 〈δT2〉2

)
+ 2

(
〈δT1δT2〉 − 〈δT1〉〈δT2〉

)
. (A 5)

If δT1 and δT2 are statistically independent, as assumed, then 〈δT1δT2〉 = 〈δT1〉〈δT2〉
and

δT 2
rms =

(〈
δT 2

1

〉
− 〈δT1〉2

)
+

(〈
δT 2

2

〉
− 〈δT2〉2

)
. (A 6)

Now, if we identify δTcore as the r.m.s. variation of the random variable δT1 and δTBL

as the r.m.s. variation of δT2, then

δT 2
core ≡

(〈
δT 2

1

〉
− 〈δT1〉2

)
(A 7)

and

δT 2
BL ≡

(〈
δT 2

2

〉
− 〈δT2〉2

)
. (A 8)

Using these, we arrive at (4.5) in the text:

δT 2
rms = δT 2

core + δT 2
BL, (A 9)

which simply says that the mean-square fluctuation of the composite variable δT is
the sum of the mean-square fluctuations of its two independent components. This
does not imply anything about the relative magnitudes of δT 2

core and δT 2
BL; it is the

purpose of the discussion that follows (4.5) to estimate their magnitudes and show
that their relative contributions to δTrms varies as we consider different values of Ra
and Pr.
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